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We examine the conservation law structure of the continuous Galerkin method.
We employ the scalar, advection—diffusion equation as a model problem for this
purpose, but our results are quite general and apply to time-dependent, nonlinear
systems as well. In addition to global conservation laws, we establish local con-
servation laws which pertain to subdomains consisting of a union of elements as
well as individual elements. These results are somewhat surprising and contradict
the widely held opinion that the continuous Galerkin method is not locally conser-
vative. (© 2000 Academic Press

1. INTRODUCTION

In comparisons of discontinuous and continuous Galerkin methods, the local conserv:
property of the former is often identified as an advantageous property, although the pre
advantage is not often explained. Let us take the point of view here that local conserve
is at least desirable, possibly helpful, and certainly not harmful. Local conservation, an
particular element conservation, emanates from the property that the weighting functior
be set exactly to value 1 on the subdomain or element of interest and zero elsewhere. C
the discontinuous nature of the weighting function space, thisis possible in the discontin
Galerkin method on an element-by-element basis. (In the finite volume method, a sin
property holds for the volumes, or covolumes, depending on whether the method is ce
node, centered, respectively.)

In contrast, itis usually said that the continuous Galerkin method is globally conservat
but not locally conservative. We have trouble with this statement on both counts and ai
the opinion that the conservation law structure of the continuous Galerkin method is
very well understood. Our goal in this work is to shed some light on this subject.

We begin in Section 2 by introducing a model problem which serves as a vehicle
discussing conservation. We use the steady, scalar advection—diffusion equation for
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purpose. We also derive results for the limiting case of no diffusion, the so-called (hyr
bolic) “reduced problem.” Although the problem we treat is a simple one, the ideas
more general and apply to typical situations such as the compressible and incompres
Navier—Stokes equations. Likewise, the results obtained may also be generalized t
unsteady case by employing the time-discontinuous Galerkin method on space—time :
wherein the finite element spaces are continuous within each slab.

We allow for different types of boundary conditions such as Dirichlet conditions al
Neumann conditions on the total and/or diffusive flux. We distinguish between bound
conditions on inflow and outflow partitions of the body, and release outflow conditions
the reduced problem. We treat boundary conditions in the typical way; namely, Dirict
conditions are enforced strongly, whereas Neumann conditions are enforced weakly. In
case we identify the correct conservation law structure for the theory and then procee
investigate the same for the continuous Galerkin method. We note that all results obta
hold exactly for both Galerkin and stabilized Galerkin methods (e.g., SUPG, GLS).

We first explore global conservation in Section 3. We note that the global conservai
law requires that the weighting function whose value is precisely 1 throughout the dorr
of the boundary value problem be present in the weighting function space. This is ¢
the case for no Dirichlet boundary conditions, because strong enforcement of the Diric
condition necessitates that weighting functions take value zero on the Dirichlet portior
the boundary. Consequently, global conservation only occurs when we have all Neun
boundary conditions. In cases where there are Dirichlet conditions, we can say not
about global conservation.

However, there is a well-known remedy to the problem of global conservation (see, €
Wheeler [11], Dougla®t al. [8], Careyet al. [3, 4], Oshimaet al. [10], Mizukami [9],
Greshoet al. [5], Barrett and Elliott [2], Hughes [6, p. 107], Hughesal. [7]): Introduce
a modified (i.e., “mixed”) formulation with an auxiliary field which amounts to the flu
on the Dirichlet portion of the boundary. The modified formulation reduces to the usi
continuous Galerkin method plus a “postprocessing” calculation to determine the fl
This field is expanded in terms of the basis functions omitted to satisfy the homogene
Dirichlet boundary condition. The resulting flux possesses remarkable properties: (i) Itis
missing link in the global conservation structure of the method, and (ii) it achieves supe
convergence characteristics (i.e., “superconvergence,”dkalarid Miller [1].) The global
conservation law of the governing theory is then obtained for the (modified) continuc
Galerkin method. This result then confirms the usual assertion that the continuous Gale
method is globally conservative.

In Section 4 we examine the issue of local conservation of the continuous Galer
method. Specifically, we endeavor to obtain a conservation law for a subdomain consistir
a union of connected element domains. Itis usually thought that this is not possible bec
the weighting function taking on value 1 on the subdomain, and identically zero elsewh
is not available in the continuous Galerkin method. However, we point out that the metl
of establishing global conservation is a paradigm capable of exposing the local conserv:
structure of the continuous Galerkin method as well. For the subdomain under considera
we introduce an auxiliary boundary flux field and develop a modified formulation whi
reduces to the usual continuous Galerkin method plus the previous modification to af
global conservation. With the usual solution of the global auxiliary boundary flux in har
the new modification entails a subsequent “postprocessing” calculation for the auxili
boundary flux on the subdomain. We show that this flux is the missing link to conservat
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on the subdomain and show that the formulation thereby attains the exact conservatiol
on the subdomain. Furthermore, we show that if a similar calculation is performed v
respect to the complementary subdomain, a pointwise identical balancing flux is obtai
In other words, uniqueness is achieved on the interface between the subdomains.

In Section 5 we specialize the results of Section 4 to an individual element subdon
and determine the element conservation law. This result seems to us to refute the n
that the continuous Galerkin method is not locally conservative. We also argue that
auxiliary flux is a continuous redistribution of the element nodal fluxes which likewise ar
conserved quantity. In fact, all conservation properties of the auxiliary fields emanate f
the conservation of nodal fluxes. This is where the fundamental conservation structure c
continuous Galerkin method resides and this is why one is able to redistribute the fluxes
tinuously in a conservative way. It seems that this observation has been missed herett
In conclusion, perhaps a more accurate characterization of the conservation compa
between discontinuous and continuous Galerkin methods is that the discontinuous Gal
method’s fundamental local conservation property is with reference to element subdom
whereas for the continuous Galerkin method, it is with reference to nodal resultant flu;
In the former case the conservation structure is transparent, whereas in the latter it reg
elucidation through the introduction of auxiliary fluxes.

In Section 6 we present some numerical calculations in support of the theory.

The comparison of continuous and discontinuous Galerkin methods involves many
pects. We conjecture that each method will find situations in which it is preferable
various reasons. We hope that with respect to the conservation properties we have cla
and stimulated the debate.

2. THE SCALAR STEADY ADVECTION DIFFUSION EQUATION

2.1. Preliminaries

Let 2 be an open, bounded region irf|Rvhered is the number of space dimensions,
and letl’ = 92 denote the boundary @, assumed piecewise smooth. The unit outwar
normal vector td" is denoted by = (ny, N, ..., Ng). Letadenote the given flow velocity,
assumed solenoidal, i.&V - a = 0. The following notations are useful:

a =n-a, 1)
a7 = (an + |an))/2, 2)
a, = (an — lan))/2. 3)

Let{I'", I'"} and{I'y, I'h} be partitions of", where

' ={xel]ayx) <0} (inflowboundary) (4)
r*=r-r- (outflow boundary) (5)

Observe from (5) that we use a minus sign to denote set subtraction. The following sut
are also required (see Fig. 1)

Iy =TgNT*, (6)

& =TpNre ()
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FIG. 1. lllustration of boundary partitions for the elliptic case.

Letx = const > 0 denote the diffusivity. Various fluxes are important:

o) = —au (advective flux) (8)
o%(u) = «kVu (diffusive flux), (9)
o=o0%+0c% (total flux), (10)
od=n-.o? (112)
or? =n-of, (12)
on=nh-o. (13)

Let D denote a domain (e.g2, I'). The L,(D) inner product and norm are denoted by
(-, -)p and|-||p, respectively.

2.2. Elliptic Case

The problem consists of finding= u(x) ¥x € £, such that

Lu=-V .ol =f inQ, (14)
u=g onTy, (15)
—a;u+oduy=h only, (16)

wheref: @ — IR, g: I'y = IR andh : T'y — IR are prescribed data. The boundary con
dition can be understood by letting

h=h= onT} (total flux), a7
h=h* onTI} (diffusive flux). (18)

2.3. Variational Formulation

The variational form of the boundary value problem is stated in terms of the followil
function spaces:

S={ueHY Q) |u=gonTly}, (19)
V={weHY(Q) |w=0o0nTg}. (20)
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The objective is to findi € S, such that

Bw,u)=L(w) Ywe, 1)

where
B(w,u) = (Vw,o(U)q + (w,afu)r,, (22)
L(w) = (w, g + (w, h)p,. (23)

Theformal consistencyf Eq. (21) with the strong form of the problem, Egs. (14)—(16)
may be verified as follows:

0=B(w,u) — L(w)
= _(w7 V. U(u))ﬂ + (w’ Un(u))rh + (wa a:U)l“h - (wv f)Q - (wv h)Fh
=—w,V-oU)+Ho+ w, —a;u+aoiu)—hyp, Ywe). (24)

Stability, or coercivity, is established as follows:
B(w, w) = (Vw, —aw + «Vw)q + (w, a;’w)rh

1
= =5 (w, &wr, + kIVwl|3 + (w, alw)r,

1
=K||Vw||§2+§|||an|1/2w||§h VweV. (25)

2.4. Hyperbolic Case (“Reduced Problem”)

In the absence of diffusion we cannot specify a boundary condition on the outfl
boundary. This time we employ the partitibn=I"; U T’ U 't and we defind’y = Iy
andI'y, = I'y, (see Fig. 2). The equations of the boundary value problem are

Lu=-V.o%u=f inQ, (26)
u=g only, 27)
o2(u)y=h" onl,. (28)

{

r‘+

FIG. 2. lllustration of boundary partitions for the hyperbolic case.
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The bilinear and linear forms are defined as

B(w,u) = (Vw, 0?(U)q + (w, aUr, (29)
L(w) = (w, g + (w, h_)rg- (30)

Consistency and stability are established as follows:

Consistency.

0=B(w,u) — L(w)
= _(wv V : Ua(u))ﬂ + (w1 _anu)l“ + (w9 aﬁ’—u)l“ - (wv f)Q - (w’ h_)r‘;
=—(w,V-o?Uu) +fo+ (w, —a;u— h_)rh— Yw € V. (31)

Stability.

B(w, w) = (Vw, —aw)q + (w, 8l w)r
1

= — 5w, aw)r + (@, atw)r

1
- é|||an|1/2w||§ Vuwe V. (32)

2.5. Finite Element Formulation

Consider a partition of2 into finite elements. LeR® be the interior of theth element,
let I'® be its boundary, and let

& = [ @° (element interiors) (33)

e

LetS" c S, V" ¢ V becontinuousdinite element spaces consisting of polynomials of orde
k on each element. The classicaintinuous Galerkin methdd:
Findu" € S", such that

Bw", u") = L™ vw" eV (34)
Stabilized variants are:

SUPG.
Bsupc(w", u") = Lsypc(w™), (35)
Bsupc(w", u") = (", u") + (ra- Vu", LuMg, (36)
Lsupaw™ = L(w") + (ra- Vu", Hg. (37)

GLS.

Bes(w™, u") = Las(w"), (38)
BoLs(w", u") = B(w", u") + (zLw", LuM)s, (39)

Lats(w™) = L™ + (zLw", fs. (40)
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Remarks.

1. 7 is the stabilization parameter.

2. Inthe hyperbolic case, or for piecewise linear elements in the elliptic case, SUPG
GLS become identical.

3. Galerkin, SUPG, and GLS aresidual methodsi.e., Egs. (34), (35) and (38) are
satisfied ifu" is replaced by, the exact solution of the boundary value problem.

2.6. Global Conservation

To extract the statement of global conservation from the variational formulation, we n
to be able to set the weighting function to one. We can only do thig i ¢. In this case
Eq. (21) yields:

Elliptic case.

0=B(Lu) — L)

:/a;udr—/fdgz—/hdr, (41)
r Q r

0= h*dl“+/fd$2~|— (—a,u+h*)dr. (42)
Q r+

r-

which may be written as

Hyperbolic case.
0=B(l,u)— L1
=/a,TudF—/fdQ— h~dr, (43)
r Q r,

which may be written as

0= h™dr +/ fdQ+ [ (—a,u)dr. (44)
r- Q r+

Remarks.

1. Thesameconservation results may be derived for the Galerkin finite element meth
SUPG, and GLS.

2. Note that for the general case (i By, # ), nothingcan be said about global conser-
vation for the finite element methods. However, it is well known how to rectify this situati
(see Hughes [6, p. 107]; Hughesal. [7]).

3. GLOBAL CONSERVATION FOR THE GENERAL CASE

We assumd’y # ¢J. We shall work with the Galerkin finite element method. We not
that the same results can be obtained for SUPG and GLS. Global conservation cg
attained by defining aauxiliary fluxon I'g, denotedH (22) : T'y — IR, and employing a
modified variational formulation. The idea is to add to the weighting function space
the finite element functions associated with These are omitted in the definition bf
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n={1,2,..,%ap}

g = {A[:EA € Fg}

Ty

FIG. 3. The set of boundary nodes &y and the support of basis functions associated with these nodes.

because functions iW" are required to vanish Ofy. Let n denote the set of all nodal
indicesA =1, 2, ..., ny. Letng be the subset corresponding to nodes locatedomne.,

ng = {A|Xa € Ty} (see Fig. 3}. V" consists of all functions that are linear combination:
of the basis functions associated with nogdes g, viz.,

V" = sparfNa} acy - (45)
whereN, is the basis function associated with noge Let
V" = V" @ sparfNa} acy, - (46)

This is the “completion” of the finite element space. Note that the constant functi
having value 1 is contained M". The modified form of Galerkin’s method is given by:
Findu" € S" andH"(Q) € V" — V" such that

W HM @), = BOW", UM — L(W") vwh e Vi, (47)
Note that (47) splits into two subproblems:

0=Bw" um - L@ vu'eV", (48)
(W", H"(@))r, = BIW", u") — L(W") vW" e V" — V", (49)

Note that (48) is the usual problem which definés= S". Itis identical to the unmodified
case. Equation (49) is a problem which determiré$). In it we assumei" is already
determined by (48), so the right-hand side is completely determined. Furthermore, 1
that this amounts to a problem involving only nodes on the bounbgignd thus may be
thought of as a small “postprocessing” calculation. The coefficient matrix for (49) is t
“mass matrix” associated withy, viz.,

> (Na, Ng) Hj(©2) = B(Na,u") = L(Na) YA€ ng, (50)

Beng

whereH(Q) is the nodal value oH"($2) atxg. ThatH"(Q2) defines the conserved total
flux alongl'y is immediately evident by setting" = 1 in (47):

1 When we present schematic diagramsillustrating ideas, for simplicity, we show piecewise linear finite eler
spaces. However, the results are general and are applicable to spaces of arbitrary order.
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Elliptic case.

/ HMQ)dI = (1, H"(Q))r,
g
=B, u" — L)

atu"dr — /fdQ hdr
Th

Th

=/ (anuh—h+)dr‘—/fd§2— h~dr, (51)
- Q r,

Ty

or, equivalently,

0= /H (Q)dF+/( anu" +h)dr + h‘dF+/fd§2. (52)
Iy Q

Iy
Hyperbolic case.

/ H"(Q)dr = (1, H"@)r,
Ig

B(1,u™ — L(2)

=/anud1“ /fdsz h™dr
r ry

= a,u"dr — /fdQ / h™dr, (53)
r+ .
or, equivalently,

o:/ Hh(sz)dr+/ (—a,uM)dr + h—dr+/fdsz, (54)
v r+ Q

T
where we have used the fact that in this cBge= I'y .

Remarks.

1. Note that in the elliptic case, diffusive flux aloiy can be computed by adding
anu" = a,gto HM.

2. Boundary fluxes computed in this way exhibit superior convergence behaviour,
“superconvergence,” see Baka and Miller [1].

4. LOCAL CONSERVATION LAWS

The procedure to derive boundary fluxes attaining global conservation, described ir
previous section, serves as a paradigm for constructing conserved quantities over st
mains. We shall now start with (47), assuming thaandH"(Q) have been obtained, and
ask: What is the conserved boundary flux associated with a subdomain consisting of a L
of connected elements? LetC Q denote the subdomain and b denote its boundary.
Let y = dw — T, the part ofdw not contained im". There are two cases of interest: (i)
dwNT = @ or, at most, consists of a finite number of isolated points in two dimensior
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FIG. 4. Subdomains consisting of a union of elements. Case (§:interior toQ2 or intersectd”, at most, at
a finite number of isolated points in two dimensions, curves in three dimensions, etc. Caseéysectd” and
dw N T is a set of finite measure with respect to the boundary surface form.

—
[
Nawd

curves in three dimensions, etc. (see Fig. 4); and@iN T # ¥ anddw N T has finite
measure with respect to the boundary surface form.

We now introduce the fieldd"(w) defined in terms of the shape functions associate
with nodes residing o, the closure of/. This set of nodes is denoteg. So

H"(@) = > NaHj(o). (55)
Aeny
and we denote
G" = spar{Na} ey, - (56)

Now our problem is, given" € S" andH"(Q) e V" — V", the solutions of (48) and (49),
respectively, findH"(w) € G" such that

W", H (@), = B,(W", u") — L,(W") — (W", H"(@))r,00 YW" € V", (57)

where:

Elliptic case.

B,(W", u") = (VW", a(uM),, + (W", a"u")r, o0, (58)
Lo (W) = (WP, ), + (W", h)p, noe- (59)

Hyperbolic case.

B,(W", u") = (VW", a?u"),, + (W", &l uMrns, (60)
Lo (W) = (W, £, + (W h )y, (61)
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As before, Eq. (57) splits into two problems:
(W, H"(@)), = B,(W", u") — L,(W" — (W, H"(Q)rjn00 YW € G", (62)
and
0= B,(W" u") — L,(W") — (W", H"(@))r,n00 YW" e V" —G". (63)
The matrix counterpart of the first problem serves to defifiéw):

> (Na, Ng), Hp(@) = B, (Na, u") — L,(Na) = (Na, HN@))rynoe YA€ ny. (64)

Ben;

The second problem is an identity by virtue of Eq. (47). To see this, seMtt whose
support is contained entirely within. In this case

B(W", u") = B, (W", uM, (65)
LW = L, (wWh), (66)
(W", H@)r, = (W", H"(Q))r,n0- (67)

Consequently, (63) follows from (47) in this case. Mgf having support entirely outside
of w, all terms in (63) are identically zero.

The conservation laws implied by (57) are established by selecting\éng V" such
that

wh, = 1. (68)

With this selection, we have:

Elliptic case.

/H“<w>dy

B,(1,u") — L,(1) — /H“(sz)dr

Y TgNdw
= /a;fuhdr‘—/fdw— /hdF— /Hh(Q)dF
I'hNow w 'hNdw FgNow
- /(a;uh—hﬂdr—/fdw
I Niw o
— /h—dr— /Hh(Q)dF, (69)
I, Ndew IgNde

or, equivalently,

Oz/Hh(w)dy+ /(—a:u“+h+)dr

Y I ndw
+ / h=dr + / Hh(Q)dF+/fdw. (70)
T Ndw FgNow ®
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Hyperbolic case.

/Hh(a))dysz(l,uh)—Lw(l)— /Hh(Q)dF
Y Fgﬂaw
= /a;’uhdl“—/fda)— /h—dr— /Hh(Q)dF
r'now w T} Ndw FgNdw
_ /anuhdF—/fdw— /h*dF— /Hh(Q)dF, (71)
rt+Naw w T, Ndw FgNiw

or, equivalently,

0=/Hh(w)d)/+ / (—anu™) dI + /h*dF+ / H“(sz)dr+/fdw,

Y rtNow I Ndw g Ndw @

(72)

where, again, we have used the fact that= Iy in the hyperbolic case.

Uniqueness. We might ask the following question: Suppose we performed a sirr
lar construction for the complementary subdom@inr- w. What is the relationship be-
tweenH"(Q — w) andH"(w)? We obviously would hope that they would be the same u
to a sign reversal. A simple argument verifies this.

By analogy with Eq. (57), we have

W", H"(Q — ),
= Bo_o(W", U") — Lo_o(W") — (W™, H"Q))rna0-0) YW" €V (73)

Add (57) and (73),

(W", H"(@) + H"(Q — 0)),, = B,(W", u") + Bo_, (W", u") — L, (W")
— Lo—o(W" — (W", H"(Q)r, 50
—(wh, Hh(Q))rgma(Q—w)
= BW", u") — L(W") — (W", HNQ))r,,
=0 vWheV" (74)

by (47). Now restrict" to G" ¢ V",
W' H"@) + H"(Q —w)), =0 YW" e G", (75)
which is equivalent to the matrix problem

> (Na. Ng), (HB(@) + HR(Q — 0)) =0 VAey;, (76)

Beny
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| H (Q-w) 4
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a a b b
©
\\,A/Hh ()

FIG. 5. Subdomain interface fluxes"(w) andH"(Q — w) equilibrate pointwise and are conservative with
respect to subdomairsand2 — w, respectively.

from which it follows that, pointwise o,
H'w) = —H"(Q — w). (77)

See Fig. 5 for a schematic illustration of this result.

5. ELEMENT CONSERVATION LAWS

The results obtained in Section 3 for an arbitrary subset of connected elements
be specialized to an individual element. Simply set Q€, for e fixed. As before, let
y = y®=T°-T, wherel'* = 9Q°. Now (57) becomes

(W, HM(©Q9),e = Bae(W", u") — Loe(W") — (W™, HNQ))pyore YW € VP, (78)

where:
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Elliptic case.
Boe(W", u") = (VW", o (U") e + (W", afu") . . (79)
Lae(W") = (W™, Hge + (WM, h)p, e (80)
Hyperbolic case.

Boe(W", u") = (VW", a3U"))ge + (W", 8 u") 1 e, (81)
Lae(W") = (W, flge + (W", h 7). (82)

Let »® denote the node numbers of nodes attached®tarhen (78) reduces to the local
problem

> (Na. Ng),eHE(Q%) = f2 = Boe(Na, u") = Lge(Na) = (Na, H™(Q))r e
Ben®

=/VNA-a(uh)dQ - / Na(—atu" +h*)dr

e rynre
- /NAh—dF— /NAHh(Q)dF
r,nre gnre
—/NAdeZ VA € n°. (83)

Qe

We refer to § as theeth element contribution to the flux at node or simply, theelement
nodal flux From Eq. (78), we have the element conservation laws:

Elliptic case.

0=/Hh(Qe)dF+ /(—a,Tuh—lrh*)dF

ve rynre
+ /h—dr+ /Hh(Q)dF+/fdQ. (84)
r, nre rgnre Qe

Hyperbolic case.
0=/Hh(Qe)dF+ / (—atuMydr
r+nre

ye
+ /h—dr+ /Hh(Q)dF+/fdQ. (85)
Qe

r,nre rgnre

We also note that from the uniqueness argument presented in the preceeding sectio
have the pointwise conservation relationship

H'(Q®) = —HNQ — Q°). (86)
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<

Al
A2 \
A3

Na; Na2 Nas Nai

H™(Q.)

Nai Nag Nas Nay

—

Al 43 |4l A1 A2 A3 Al

N

A2
HA Q- T~

FIG.6. ElementQeinterface fluxH"(Q°) equilibrates subdomaiR—Q¢ interface fluxH"(2-Q¢) pointwise.
H"(Q°) andH"(Q-Q°) are conservative with respect@s andQ-Q¢, respectively.

See Fig. 6. By summing Eq. (83) ovAre ¢, we see that

/ HM Q) dr =) f5. (87)
ye Aen®
Thus, by the element conservation laws, (84) and (85), we see that the sum of the ele
nodal fluxes represents a conserved quantity. See Figs. 7 and 8 for schematic illustra
of the element conservation laws.

By returning to the global equation (47) and selectily = N,, for A fixed, we see

that

0= B(Na, u") — L(Na) = (Na, H" (@),

= ) (Bas(Na,u") — Loe(Na) — (Na, H™(Q))r,re)
ecE(A)

> (88)

ecE(A)
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¢ = {Al, A2, 43}

fas
H () o A
A i
s
51
1 Nay Naz Nas Nay a1
0 . . 0 . . ’
Al A2 A3 Al Al A2 A3 Al

*= [ HMQ) T = T aepe B
[‘e

*+/fdQ=0
Qe

FIG.7. Elementconservation lagmeasgl™ N T") = 0). H"(Q®) is the conservative redistribution of the nodall
fluxes, f;, in terms of the basis functionl,.

whereE(A) is the set of element numbers of elements attached to Ao8ee Fig. 9. The
f&’s may be thought of as a delta distribution representation of the conserved fluxes.

6. NUMERICAL EXAMPLES: CONSERVATIVE FLUX CALCULATION

We consider the following boundary value problem: Finsuch that

—Au=1 inQ, (89)
u=0 onTl, (90)

whereQ = [—1, 1] x [-1, 1] C IR?andQ = Q1 U Q, with Q; = [-1, 0.5] x [-1, 1]and
Q, = [0.5, 1] x [—1, 1], with boundarie§’; andl',, respectively. An approximate solution
is computed using the standard continuous Galerkin method with piecewise linears
unstructured triangulations which respect the subdonirendQ,, see Fig. 10.

We calculate approximations of the normal flux

on the boundarieB, I';, andI", using the methodology described previously. We shall refe

to approximations computed in this manner as the “conservative flux.” For comparison,
also calculate the exact flux using a Fourier series solution and a numerical approxime
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FIG. 10. (i) DomainQ = ©; U Q. (ii) Coarse mesh with 358 triangles and 201 nodes. (iii) Fine mesh wit
1342 triangles and 712 nodes. (iv) Contours of the numerical solution on the fine mesh.

0.1 T T T Y T

FIG. 11. The exact flux (solid), the conservative flux (dashed), and the flux computed by direct evaluat
of element derivatives (dash-dotted) are plotted on the boundary starting in the upper left-hand-ebyrgiir{
counter-clockwise fashion.
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FIG. 12. The exact flux (solid), the conservative flux (dashed), and the directly evaluated flux (dash-dot
plotted as functions of; starting in the corner<1, —1) in counter-clockwise direction.

obtained by direct evaluation of the flux, obtained by computing derivatives of the numer
solution in elements adjacent to the boundary in question.

In Fig. 11 we present fluxes for the external boundBryThe approximations to the
exact solution were computed using the coarse mesh. We observe that the conser
flux faithfully approximates the exact solution, whereas the direct evaluation of flux
significantly in error. Furthermore, the conservative flux is verified to satisfy the conservai

law, namely,
[+ [a=0 (92)
Q r

to machine precision, as anticipated by the theory.

In Figs. 12 and 13, we show the fluxes BnandT,, respectively. The numerical calu-
lations were performed on the fine mesh. In the case of the evaluation of flux by dil
calculation of element derivatives, we have computed the flux on the internal interfac
the average of the fluxes computed on elements to the left and right of the interface.
substantially improves these results, as can be seen by comparing Fig. 14 with Figs. 1.
13. We note, that for the calculation of the conservative flux we again satisfy the conserve
law

/f+/an:0 fori =1, 2, (93)

to machine precision, consistent with the theory. Further, the conservative flux is a r
more accurate approximation than the direct evaluation of flux. However, on the interf
region, the averaged direct evaluation produces commensurate accuracy, but does not
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FIG. 13. The exact flux (solid), the conservative flux (dashed), and the directly calculated flux (dash-dott
as functions of", starting in (0.5—1) in counter-clockwise direction.

conservation. The only negative aspect of the conservative flux calculation is that we t
enforced continuity of flux around the endpoints of the interface where the exact solut
is discontinuous. As might be anticipated by virtue of the fact that the conservative f
calculation amounts to dm-projection, overshoots and undershoots are exhibited at poit

-0.05

-0.25

0 0.2 0.4 0.6 0.8 1 12 1.4 1.6 18 2

FIG. 14. Comparison between: left (dashed), right (dash-dotted), and average (solid) of the directly evalu
fluxes on the internal interface.
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of discontinuity of the exact solution. This result suggests that the conservative flux app
imation should be allowed to be discontinuous at known locations of discontinuity in 1
exact solution.

7. CONCLUSIONS

1. From (88) we see that the element nodal fluxecarserved node-wise

2. Likewise, an individual element’'s nodal fluxes areanservedquantity by virtue
of (87).

3. The H"(Q®) represents a continuous redistribution of elem&mnodal fluxes, in
terms of the basis functions, thateserves conservation

4. For the stabilized methods, the element fluxes change, but the conservation
remain the same.

5. Nodal fluxes correspond to the notion of nodal forces in structural mechanics. St
tural engineers seem comfortable with element nodal force resultants (i.e,steefe)
whereas fluid mechanicians do not. Rather, fluid mechanicians seem comfortable with
tributed fluxes over the boundaries of control volumes (e.g., element domains). We
from the preceding developments that nodal fluxes and their continuous redistributio
terms of the element basis functions are different but equivalent representations of the -
information, viz.,

> (Na, Np),eHE(@%) =f5 VA€, (94)

Ben®
S = (Na, HNQ9)),. VA€ S (95)

If we know the £’s, H"(Q®) is uniquely defined by (94). Likewise, if we kno" (Q¢), the
f&’s are uniquely defined by (95). These quantities are fundamental to the local conservz
structure of continuous Galerkin and stabilized methods.
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